Localization of sepiapterin reductase in the human brain.
نویسندگان
چکیده
Sepiapterin reductase (SPR) is the enzyme that catalyzes the final step of the synthesis of tetrahydrobiopterin (BH4), the cofactor for phenylalanine hydroxylase, tyrosine hydroxylase (TH), tryptophan hydroxylase, and nitric oxide synthase (NOS). Although SPR is essential for synthesizing BH4, the distribution of SPR in the human brain has not yet been clarified. In the present study, we purified recombinant human SPR from cDNA, raised an antibody against human SPR (hSPR), and examined the localization of SPR protein and SPR activity. Human brain homogenates from the substantia nigra (SN), caudate nucleus (CN), gray and white matters of the cerebral cortex (CTX), and dorsal and ventral parts of the medulla oblongata (MO) were subjected to Western blot analysis with anti-hSPR antibody or with anti-TH antibody. Whereas TH protein showed a restricted localization, being mainly detected in the SN and CN, SPR protein was detected in all brain regions examined. SPR activity was relatively high compared with the activity of GTP cyclohydrolase I (GCH), the rate-limiting biosynthetic enzyme of BH4, and was more widely distributed than GCH activity. Immunohistochemistry revealed SPR immunoreactivity in pyramidal neurons in the cerebral CTX, in a small number of striatal neurons, and in neurons of the hypothalamic and brain stem monoaminergic fields and olivary nucleus. Double-staining immunohistochemistry showed that TH and SPR were colocalized in the SN dopamine neurons. Localization of SPR immunoreactive neurons corresponded to monoamine or NOS neuronal fields, and also to the areas where no monoamine or NOS neurons were located. The results indicate that there might be a BH4 biosynthetic pathway where GCH is not involved and that SPR might have some yet unidentified function(s) in addition to BH4 biosynthesis.
منابع مشابه
Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency.
Sepiapterin reductase (SR) deficiency was recently described in patients with a severe biogenic amine deficiency presenting without hyperphenylalaninemia and it was suggested that the tetrahydrobiopterin (BH(4)) pathway may be different in different cells and tissues. We now developed a HPLC method for the measurement of yellow fluorescing sepiapterin for the rapid diagnosis of SR deficiency. S...
متن کاملProduction of sepiapterin in Escherichia coli by coexpression of cyanobacterial GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase.
Synechocystis sp. strain PCC 6803 GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase were coexpressed in Escherichia coli. The E. coli transformant produced sepiapterin, which was identified by high-performance liquid chromatography and enzymatically converted to dihydrobiopterin by sepiapterin reductase. Aldose reductase, another indispensable enzyme for sepiapterin production,...
متن کاملTetrahydrobiopterin biosynthesis. Studies with specifically labeled (2H)NAD(P)H and 2H2O and of the enzymes involved.
The biosynthesis of tetrahydrobiopterin from either dihydroneopterin triphosphate, sepiapterin, dihydrosepiapterin or dihydrobiopterin was investigated using extracts from human liver, dihydrofolate reductase and purified sepiapterin reductase from human liver and rat erythrocytes. The incorporation of hydrogen in tetrahydrobiopterin was studied in either 2H2O or in H2O using unlabeled NAD(P)H ...
متن کاملMutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase.
Tetrahydrobiopterin (BH(4)) deficiencies are a highly heterogeneous group of disorders with several hundred patients, and so far a total of 193 different mutant alleles or molecular lesions identified in the GTP cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SR), carbinolamine-4a-dehydratase (PCD), or dihydropteridine reductase (DHPR) genes. The sp...
متن کاملSepiapterin reductase deficiency: clinical presentation and evaluation of long-term therapy.
Sepiapterin reductase deficiency has recently been recognized as a treatable, inborn error of pterin metabolism. This investigation is the first long-term clinical study demonstrating impressive positive, long-term effects of treatment in two cases of sepiapterin reductase deficiency after 2 and 5 years of treatment respectively. The two patients were not diagnosed before 7 and 13 years of age....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 954 2 شماره
صفحات -
تاریخ انتشار 2002